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Introduction
The NF-κB family is comprised of a variety of homo- and

hetero-dimers formed by p50, p52, RelA (p65), RelB, and c-
Rel subunits[1–4].  The best-described form of NF-κB is con-
stituted by the p50 and p65 heterodimer.  This heterodimer is
sequestered in the cytoplasm bound to a family of inhibitory
proteins known as IκB[5,6].  Following cell stimulation, the
IκB proteins become phosphorylated by IκB kinase (IKK), a
large kinase complex consisting of 2 catalytic subunits, IKKα
and IKKβ, and the regulatory subunit, IKKγ/NEMO[7–9].
Phosphorylation of IκB targets this inhibitor for ubiqui-
tination and degradation, which results in the release and
subsequent translocation of NF-κB to the nucleus to acti-
vate transcription of a variety of genes[10] (Figure 1).  In this
review, we first discuss the current understanding of why
RNA-mediated gene silencing by small interfering RNA
(siRNA) is important in NF-κB pathway and then focus on
the use of siRNA to analyze the role of cellular factors in
regulating the NF-κB pathway and its potential use as a tar-
geted therapy to inhibit the NF-κB pathway.

The NF-κκκκκB pathway: mechanisms leading to
activation

NF-κB can be activated by a variety of stimuli, including
inflammatory cytokines, such as TNF-α and IL-1, and growth
factors as a result of stress response.  Intra-cellular events
such as DNA damage by radiation or chemotherapy serve as
potent stimulus to activate NF-κB as well.  TNF-α and IL-1
are important to the generation of a systemic and local re-
sponse to infection, injury, and immunological challenges[2].
The signals from the TNF receptor (TNFR) and IL-1 receptor
(IL-1R) are transduced through the TNF receptor-associated
factor2 (TRAF2) and 6 (TRAF6), respectively[11].  These
TRAF are believed to function ‘upstream’ of the cascades of
IKK and NF-κB[12,13].  Many members of the mitogen-acti-
vated protein kinase kinase kinase (MAP3K) family includ-
ing MEKK1[14], MEKK2, MEKK3[15], TGF-β-activating ki-
nase1 (TAK1)[16] and NF-κB-inducing kinase (NIK)[17] also
activate IKK when overexpressed.  However, MEKK3 is an
essential signal transducer in both TNFR- and IL-1R-induced
NF-κB activation[11,18-22].
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Initial studies on the structure of TRAF showed that the
C-terminal domain for TRAF was responsible for protein-
protein interactions and the N-terminal region of TRAF, in-
cluding a RING finger and a variable number of Zn finger
domains, was necessary for TRAF mediated activation of
downstream signaling pathways[23,24].  A RING finger with
ubiquitin ligase activity[25] is critical for NF-κB activation by
TRAF[26–28].  TRAF2 and TRAF6 were shown to be able to
function as ubiquitin ligases that autoubiquitinate resulting
in a lysine-63 (K63)-linked polyubiquitination[29–31].  Ubiqui-
tinated TRAF can bind to the TAK1, and its adapter proteins
TAB1 and TAB2[18,32,33].  TAB1 binds to TAK1 and is in-
volved in regulating its activity, while TAB2 binds preferen-
tially to K63-linked polyubiquitin chains[12], resulting in the
activation of TAK1[34].  Activated TAK1 can phosphorylate
IKK directly or act on the NF-κB-inducing kinase (NIK), which
in turn activates IKK[16,35]. .Thus, the TAK1 complex is an
important link between TRAF and the NF-κB pathway (Figure
1).  TRAF7 also plays an important role in regulating activa-
tion of NF-κB and it can act like TRAF6 in relaying signals
and activating the NF-κB pathway[18].

IKK activation by the TNF-α and IL-1 is a rapid, but
transient process, implying a negative feedback regulation
of IKK following its activation.  This negative regulation of
IKK is controlled, at least in part, by deubiquitination, as
shown in recent studies on the tumor suppressor cylindro-
matosis protein CYLD[36,37].  Loss of CYLD has been linked
to a predisposition to cylindromas, a syndrome character-
ized by benign tumors of the skin appendages.  Interestingly,
CYLD contains cysteine and histidine boxes found in the
ubiquitin-specific protease (UBP) family of deubiquitination
enzymes[38].  Moreover, a portion of the histidine box of CYLD
is deleted in some cylindromatosis patients, suggesting a
link between the deubiquitination activity of CYLD and its
tumor suppressor function.  Three independent studies have
shown that CYLD binds to NEMO and facilitates the disas-
sembly of K63-linked polyubiquitin chains on TRAF2 and
TRAF6[36,37].  Thus, a critical function of CYLD is to down-
regulate NF-κB activation through its deubiquitinating ac-
tivity[31].

RNAi-mediated gene silencing
RNAi is associated with a number of practical and theo-

retic advantages over pre-existing methods of suppressing
gene expression (Table 1)[39–44] and thus provides a useful
mean to dissect the role of various factors that regulate the
NF-κB pathway.  RNAi also has the potential to be devel-
oped as a therapeutic modality to knock-down gene prod-
ucts that are important in activating the NF-κB pathway[45].

Figure 1.  TRAF2 and TRAF6 mediated NF-κB activation.  Both of
the TRAF2 and TRAF6 are ubiquitinated in the presence of ubiquitin-
activating enzyme (E1) and ubiquitin-conjugating enzyme (E2).
Ubiquitinated TRAF2 and TRAF6 bind to TAB2 and activate TAK1.
Activated TAK1 leads to IKK activation.  In turn, activated IKK
results in IκB phosphorylation.  Phosphorylated IκB will be rapidly
degraded after ubiquitination, and NF-κB (shown as the p65/p50
heterodimer) is translocated into the nucleus.  TRAF2 and TRAF6
may also associate with NIK and MEKK3 to activate IKK complex.
CYLD binds to NEMO and facilitates the disassembly of K63-linked
polyubiquitin chains on TRAF2, TRAF6.
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Several lines of evidence support a role for RNAi in a cell-
based defense mechanism that protects the genome against
mobile genetic elements such as viruses and transposons[46,47].
There are 2 classes of small RNA that can silence gene
expression.  One class is processed from double-stranded
(dsRNA) precursor molecules into small interfering RNA
(siRNA) by the RNAase III-like nuclease called Dicer; these
siRNA act as guides for the siRNA-induced silencing com-
plex (siRISC) to target and cleave complementary mRNA[48].
Dicer processes another class of small RNA from pre-
microRNA into microRNA.  These micro RNA act as guides
for a multiprotein complex (miRISC) which identifies mRNA
and silences gene expression either via destruction of the
mRNA or by blocking its translation[47,49,50].  Dicer was first
isolated from extracts of Drosophila, but was later shown to
exist in a large variety of species ranging from fungi to man[51].
Two Dicers, Dcr-1 and Dcr-2 were found in Drosophila.  Dcr-
1 processes pre-miRNA[52,53], while Dcr-2 processes dsRNA.
In contrast to their processing specificities, both Dcr-1, Dcr-
2 and its associated factor R2D2 are required for assembly of
siRNA into siRISC (Figure 2)[47,54].  Synthetic 21-23 nucle-
otide double stranded siRNA were synthesized to resemble
Dicer cleavage products and could be directly incorporated
in the mammalian RISC to target mRNA for degradation[55].
Another approach relies on stable expression of short hair-
pin RNA from a plasmid vector down stream from a pol III or
U6 promoter to result in a reproducible reduction of target
gene expression in mammalian cells[45].  Various strategies
including retroviral, adenoviral and lentiviral vectors have
been developed that allow the introduction of siRNA encod-
ing vectors at high efficiency in primary cells.  With these
technologies, it is now possible to obtain effective gene si-
lencing in transgenic embryos and adult mice[48].  There have
been several reports of successful use of in vivo siRNA in
different animal models of human diseases; for example, mi-
croinjection of siRNA directed against zebrafish dystrophin
gene into zebrafish embryos demonstrates the efficacy of

siRNA-based gene silencing in this model and illustrates the
potential of this approach to determine the roles of multiple
protein products expressed by a single gene during the early
stages of development[56].  Delivery of siRNA directed against
either caspase 8 or hepatitis B virus (HBV) by mouse tail
vein have been effective in suppressing specific gene ex-
pression[57,58].  In addition, Verma et al demonstrated that
siRNA directed against β-catenin reduced tumor growth in
nude mice when administered by either intravenous or intra-
peritoneal injections, which suggests that siRNA could have
therapeutic potential for inhibiting the expression of genes
that enhance the growth of tumors[59].  RNAi also holds great
promise for the treatment of CNS diseases in which
neurodegeneration is linked to overproduction of endog-
enous protein or to synthesis of aberrant proteins coded by
dominant mutant alleles[60].

More recently, many researchers have used plasmid and
viral vectors for transcription of short-hairpin RNA (shRNA)
that efficiently deliver siRNA into both dividing and non-
dividing cells, stem cells, zygotes, and their differentiated
progeny.  Gene expression was more stably inhibited with
these expression systems than with the transient knockdown
recorded with chemically synthesised siRNA.  A number of
groups have used shRNA instead of siRNA to obtain rela-
tively long-lived gene silencing in vivo[61].  The libraries of
retroviruses expressing shRNA designed to silence large frac-
tions of all expressed human genes have been produced.
These shRNA libraries have the potential to provide mam-
malian biologists for the first time with a genetic screening
tool similar to that which has been used in more primitive
organisms.

RNAi is an important tool for analyzing the NF-
κκκκκB pathway

Signal transduction pathways, such as the NF-κB
pathway, are modular composites of functionally interde-

Table 1.  Advantages and disadvantages of different gene suppression strategies.

       Gene suppression                       Advantages               Disadvantages

RNAi Potent, specific and simple Transfection-dependent
Post-transcriptional gene silencing Knock-down not knock-out

Antisense technology Simple Efficacy and specificity variable
Knockout mouse Complete gene silencing. Time-consuming and laborious to produce
Transfection of dominant negative mutant Ability to determine functions of discrete Transfection-dependent
gene regions of a protein Variable specificity
Small molecule inhibitors Simple Often nonspecific
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pendent sets of proteins that act in a coordinated fashion to
transform environmental information into a phenotypic
response.  Several mechanisms that cause constitutive NF-
κB activity can be found in different epithelial tumors, tumor
cell lines and lymphoid malignancies[62].  Many different in-
hibitors affecting the NF-κB activation pathway that have
beneficial effects on tumor development or that increase the
response to radiation and chemotherapy have been
described.  However, most of these inhibitors are not spe-
cific and inhibit many other pathways as well[63].  Using RNAi
to stably knock out specific gene expression and function is
a highly effective and novel method that is rapidly gaining
ground because of an explosion of new and improved
techniques.  The exquisite sequence specificity of RNAi pro-
vides a promising approach to address the complex interac-
tions of viral and cellular regulatory proteins involved in NF-
κB pathway[64].  As potent small-molecule inhibitors to any
gene expression, siRNA can be used to specifically analyze
the role of single gene products in NF-κB pathway to em-
phasize the selectivity of RNAi-based therapy.  Direct
evidence, using both in vitro and in vivo models, indicates
that RNAi is a critical tool to inhibit the NF-κB pathway at
multiple levels and study the transmission of signals in both
physiologic and pathologic states[36,37,65–68].

TAK1 is an important upstream mediator of the NF-κB
pathway[16,34,46].  siRNA directed against TAK1 decreased
the amount of both IL-1 and TNFα-induced phospho-IκBα
expression and prevented IκBα degradation.  The loss of
endogenous TAK1 by siRNA resulted in impaired DNA-bind-
ing of NF-κB.  These results provide the first genetic evi-
dence that supports a role of TAK1 as a critical upstream
kinase for IKKα or IKKβ in IL-1 and TNFα-induced activa-
tion of the NF-κB pathway[69].  Takaesu et al also reported
that endogenous IKKα and IKKβ co-immunoprecipitated
with TAK1 upon TNFα stimulation.  siRNA directed against
IKKα and IKKβ reduced IL-1 and TNFα-induced activation
of the NF-κB pathway.  Simultaneous transfection of both
IKKα and IKKβ siRNA resulted in further decreases in NF-
κB activation as compared to transfection of each of these
individual siRNA.  These findings suggest that in addition
to IKKα and IKKβ, TAK1 is important for NF-κB activation
challenging previous result that only IKKβ was involved in
NF-κB activation[28,70–72].

Bcl-10, a cellular homolog of the equine herpesvirus-2
E10 gene[73], was found over-expressed in some lymphomas
of the mucosa-associated lymphoid tissue (MALT).  Bcl-10
has been shown to physically associate with MALT1, which
is a member of the paracaspase family and also involved in
MALT lymphoma.  Bcl-10 and MALT1 are essential for the

Figure 2.  siRNA pathways.  Long dsRNA is processed by the RNAase
III-like nuclease called Dicer2/R2D2 into siRNAs, while pre-miRNA
is processed by the RNAase III-like nuclease called Dicer1 into miRNA.
The 2 strands of the siRNAs or miRNA are unwound by the siRISC or
miRISC, 1 strand is selected to identify a complementary target
mRNA which in turn is cleaved by an endonuclease in siRISC or
blocking translation in miRISC.
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activation of IKK and NF-κB in response to T cell receptor
stimulation[74].  Sun et al presented evidence that TRAF2
and TRAF6 mediated IKK activation by Bcl-10 and T cell
receptor stimulation.  TRAF6 siRNA reduced the activation
of IKK by 50% and the same percentage of reduction in IKK
activation was observed by TRAF2 siRNA.  However, the
combination of TRAF2 and TRAF6 siRNA reduced IKK ac-
tivation by approximately 80%.  Thus in T cells, both TRAF2
and TRAF6 are involved in upstream regulation of the NF-
κB pathway in response to T cell receptor stimulation[64].  In
addition, TAK1 siRNA transfection also dramatically reduced
IKK activation by T cell receptor stimulation in T cells.
Moreover, MALT1 and Bcl-10 have been shown to mediate
IKK activation by facilitating the K63 polyubiquitination of
NEMO.  siRNA that reduced the expression of paracaspase
and Ubc13 abrogated the effects of Bcl-10, which indicates
that Bcl-10 promotes activation of IKK and NF-κB through
paracaspase- and Ubc13-dependent ubiquitination of
NEMO[75].

The tumor suppressor cylindromatosis protein CYLD
belongs to a subfamily of enzymes with deubiquitinase ac-
tivity[76,77].  A collection of shRNA that suppress 50 human
de-ubiquitinating enzymes were used to identify deubiqui-
tination enzymes and study the mechanism for human
cylindromatosis[36] in the NF-κB pathway[45].  The studies
from this and other groups show that CYLD binds to NEMO,
and appears to regulate its activity through deubiquitination
of TRAF2[38,78].  They also demonstrated that inhibition of
CYLD by siRNA enhanced NF-κB activation and prevented
apoptosis, suggesting a mechanism through which loss of
CYLD contributes to oncogenesis[36].  In independent studies,
Trompouki et al[37] also used the siRNA method and demon-
strated that CYLD interacted with NEMO and negatively regu-
lated NF-κB signaling by deubiquitination of TRAF2.  They
have now started to investigate the use of CYLD inhibitors
in clinical trials.

Potential therapeutic uses of NF-κκκκκB inhibition
by siRNA

The NF-κB signaling pathway is important in the genera-
tion of the monocyte-derived dendritic cells and regulates
their functional maturation and activation[79–81].  Dendritic
cells play a prominent role in infectious diseases, immune
disorders, and in cancer immunology[82].  In mammalian cells,
NF-κB/Rel proteins are involved in regulating survival,
differentiation, and activation of the dendritic cells[80,81,83].
Targeted mutations in mice demonstrate that deficits in RelB,
cRel, p50, or p52 lead to various immune impairments that

directly implicate dendritic cells.  Transfection of dendritic
cells with p50 siRNA was tested by Diego[88] and his col-
leagues as a way of performing loss-of-function analysis in
vitro and the results showed strong and specific down-regu-
lation of both p50 mRNA and protein levels.  Such interfer-
ence impaired p50 nuclear localization and DNA-binding in
response to CD40 Ligand (CD40L) and IL-1 activation.  The
cytosolic fraction also showed reduced p50 activity after p50
siRNA transfection[88].

IL-12 is a cytokine pivotal for the development of cellular
immunity and production of high levels of IFN-γ by T cells.
A biologically active form of IL-12 (IL-12α and IL-12β
heterodimer) is produced from the transcription of separate
genes which are regulated independently[89].  Prior results
have shown that CD40L alone or in combination with IL-1
induces high levels of IL-12β transcription[90].  However, a
significantly reduced IL-12β mRNA level and reduction of
the secretion of IL-12αβ heterodimer was observed after p50
siRNA, which suggests that p50 siRNA down-regulated the
production of IL-12 in response to CD40L and IL-1.  These
results are consistent with studies of the promoter of the IL-
12β gene, which is NF-κB inducible and contains sites for
the binding of p50 in B cells[91].

It has been reported that p65 can stimulate HIV-1 tran-
scriptional elongation by binding to the HIV-1 long terminal
repeat (LTR)[92,93].  The use of siRNA directed against p65
resulted in reduced HIV-1 replication, which correlated with
the decrease in HIV-1 virons in supernatants from MAGI
cells[66].  CD4-positive human T-lymphocyte cell lines includ-
ing MAGI have been used to study different aspects of the
HIV-1 life cycle.  These cells, which stably express CD4 re-
ceptors on the cell surface, can be infected by HIV-1.  Since
they contain a HIV-1 LTR fused to the β-galactosidase gene,
infectious virus can transactivate the LTR-β-galactosidase
reporter and increase β-galactosidase activity.  Thus, stain-
ing of MAGI cells to determine β-galactosidase activity makes
these cells an excellent indicator to determine the number of
HIV-1 infectious particles[94].  It has been observed that more
than 90% of the infected cells transfected with control siRNA
demonstrated marked β-galactosidase positivity.  In contrast,
only a few cells had β-galactosidase activity when the MAGI
cells were transfected with p65 siRNA, which indicate that
inhibition of HIV-1 replication by p65 siRNA resulted in very
low levels of HIV-1 infectious particles[66].  This finding high-
lights the importance that NF-κB plays in the life cycle of
HIV-1.

Tumors that have constitutive NF-κB activity show in-
creased resistance to chemotherapy.  Inhibition of NF-κB
does not only lead to enhanced apoptosis but also to in-
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creased sensitivity to radiation or chemotherapy in several
tumor cells such as fibrosarcoma and colorectal cancer cell
lines, as well as xenograft models or pancreatic carcinoma
cells[63].  CPT-11 is a topoisomerase I inhibitor which has
efficacy in the treatment of certain neoplasms including
colorectal cancer.  In spite of the initial response to therapy[81],
most tumors from patients treated with CPT-11 become re-
sistant and exhibit tumor progression[95].  However, induc-
ible chemotherapy resistance to CPT-11 has been shown to
be reversed by inhibiting NF-κB[83,96].  More recent studies
from Guo et al[65] demonstrate that NF-κB activation induced
by CPT-11 in the relatively resistant HCT116 cell line is effec-
tively inhibited by p65 siRNA both in vitro and in vivo.
Transfection of p65 siRNA into HCT116 cells dramatically
reduced the expression of p65.  In addition, they found that
loss of p65 did not impact cell viability on its own, but p65
siRNA in conjunction with CPT-11 increased tumor cell sen-
sitivity to the cytotoxic effects of CPT-11.  P65 siRNA in-
creased apoptosis and reduced NF-κB-binding activity.  The
effect on apoptosis could be partly explained by down-regu-
lation of the NF-κB target genes c-IAP1 and c-IAP2[65].  These
results are consistent with the role that NF-κB plays in the
inhibition of CPT-11 mediated cell killing[2,97].  Importantly,
transient exposure of HCT116 cells to p65 siRNA in cell cul-
ture altered the ability of these cells to proliferate following
injection into nude mice in the presence of CPT-11 treatment.
Systemic therapy with intravenous injection of p65 siRNA
did not limit tumor growth.  However, when combined with
CPT-11, intravenous injection of p65 siRNA significantly de-
layed tumor growth with dramatic reductions in tumor vol-
ume[65].  These studies demonstrate that delivery of siRNA
to tumor cells in vivo is feasible and that inhibition of NF-
κB-mediated transcription by p65 siRNA holds therapeutic
promise in cancer[98].

Questions to the safety and efficacy of using
RNAi as a therapeutic strategy

Interest in RNAi initially was restricted to basic research-
ers to study gene function.  The subsequent finding that in
vivo delivery of siRNA to induce RNAi in mammalian cells
has generated excitement regarding its potential therapeutic
applications.  Various approaches have been shown to im-
prove cell and tissue delivery of siRNA and shRNA[61,99].

A major obstacle to the development of siRNAi as a thera-
peutic tool is its delivery to the desired cell type in the cor-
rect tissue or organ.  Hydrodynamic delivery of siRNA that
involves the intravascular injection of large fluid volumes in
order to locally increase intravascular pressure[100,101] might

be adapted for local administration of siRNA by arterial or
venous catheters in organs such as liver, kidney, heart or
lungs, but cannot be utilized for systemic treatment.  Intra-
venous injection of siRNA in large volumes of saline solution,
works by creating a back-flow in the venous system that
forces the siRNA solution into several organs with lesser
efficiency[102,103].  Using RNAi to silence genes is also limited
by the stability of siRNA molecules in vivo and the effi-
ciency with which they are taken up by target cells and tis-
sues[104].  An additional obstacle in exploring siRNA as a
therapeutic tool is toxicity.  siRNA have the potential to in-
duce a concentration- and cell-type-dependent cell death[105].
In mammalian cells, the utility of RNAi has been limited by
the innate immune response triggered by dsRNA.  Long
dsRNA induce an interferon response usually resulting in a
generalized inhibition of gene expression.  However, this
response can usually be avoided in mammalian cell cultures
by using synthetic siRNA with a length of 21 nt[105].

Inhibition of viral replication by RNAi has been demon-
strated in vitro for a variety of viruses, including RNA vi-
ruses such as HIV, respiratory syncytial virus, influenza virus,
poliovirus, West Nile virus, dengue virus, and foot and mouth
disease virus.  However, some viruses are resistant to RNAi;
for example, although siRNA can inhibit the production of
progeny virus, the genomic RNA of respiratory syncytial
virus, hepatitis delta virus, and rotavirus are resistant to
RNAi, either because of tight shielding by proteins or to
sequestration in compartments inaccessible to siRNA[106–108].
Moreover, some viruses such as influenza and vaccinia pro-
duce proteins that actively suppress silencing by RNAi[109].
Adenovirus was recently shown to block the processing of
shRNA in mammalian cells by expressing a viral noncoding
RNA at such high levels that it binds most of the available
RNAi processing machinery[110].

Summary
The discovery of RNAi has already provided a powerful

tool for basic science researchers to study gene function.
More recently the use of RNAi for genetic-based therapies
has been widely studied, especially in viral infections,
cancers, and inherited genetic disorders.  Combined with
genomics data, RNAi-directed gene-silencing could allow
functional determination of any gene expressed in a cell or
pathway.  Thus, the therapeutic potential for RNAi is
enormous, but the ability to efficiently and stably produce
and deliver sufficient amounts of siRNA to the target tissues
require refinement before this new technology can be tried
clinically[111].
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